skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lele, Subhash R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to the high dimensional integration over latent variables, computing marginal likelihood and posterior distributions for the parameters of a general hierarchical model is a difficult task. The Markov Chain Monte Carlo (MCMC) algorithms are commonly used to approximate the posterior distributions. These algorithms, though effective, are computationally intensive and can be slow for large, complex models. As an alternative to the MCMC approach, the Laplace approximation (LA) has been successfully used to obtain fast and accurate approximations to the posterior mean and other derived quantities related to the posterior distribution. In the last couple of decades, LA has also been used to approximate the marginal likelihood function and the posterior distribution. In this paper, we show that the bias in the Laplace approximation to the marginal likelihood has substantial practical consequences. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026